Induction of necrosis in human neutrophils by Shigella flexneri requires type III secretion, IpaB and IpaC invasins, and actin polymerization.
نویسندگان
چکیده
Infection by Shigella flexneri is characterized by infiltration of neutrophils in the intestinal mucosa and by a strong inflammatory reaction. Although neutrophils are constitutively programmed to die by apoptosis, we show that isolated human neutrophils undergo necrosis 2 h after infection with virulent S. flexneri strain M90T but not with the virulence plasmid-cured strain BS176. This was demonstrated by the release of azurophil granule proteins concomitant with the release of lactate dehydrogenase (LDH), disruption of the plasma membrane, and absence of DNA fragmentation. Mutants with the mxiD1 gene, coding for an essential component of the secretion type III machinery, or the genes coding for IpaB or IpaC invasins deleted were not cytotoxic. Neutrophil necrosis occurred independently of the bacterial ability to leave phagosomes, and it involved actin polymerization, as the addition of cytochalasin D after phagocytosis of Shigella inhibited the release of LDH. In conclusion, Shigella kills neutrophils by necrosis, a process characterized by the release of tissue-injurious granular proteins. This probably contributes to disruption of the epithelial barrier, leading to the dysentery observed in shigellosis and allowing Shigella to enter its host cells.
منابع مشابه
Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction.
Shigella flexneri contact with enterocytes induces a burst of protein secretion via its type III secretion apparatus (TTSA) as an initial step in cellular invasion. We have previously reported that IpaD is positioned at the TTSA needle tip (M. Espina et al., Infect. Immuno. 74:4391-4400, 2006). From this position, IpaD senses small molecules in the environment to control the presentation of Ipa...
متن کاملBile salts stimulate recruitment of IpaB to the Shigella flexneri surface, where it colocalizes with IpaD at the tip of the type III secretion needle.
Shigella flexneri uses its type III secretion apparatus (TTSA) to deliver invasins into human cells. This TTSA possesses an external needle with IpaD at its tip. We now show that deoxycholate promotes the stable recruitment of IpaB to the needle tip without inducing a rapid burst of type III secretion. The maintenance of IpaB at the needle tip requires a stable association of IpaD with the Shig...
متن کاملIpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes.
Shigella flexneri causes human dysentery after invading the cells of the colonic epithelium. The best-studied effectors of Shigella entry into colonocytes are the invasion plasmid antigens IpaC and IpaB. These proteins are exported via a type III secretion system (TTSS) to form a pore in the host membrane that may allow the translocation of other effectors into the host cytoplasm. TTSS-mediated...
متن کاملStructural characterization of the N terminus of IpaC from Shigella flexneri.
The primary effector for Shigella invasion of epithelial cells is IpaC, which is secreted via a type III secretion system. We recently reported that the IpaC N terminus is required for type III secretion and possibly other functions. In this study, mutagenesis was used to identify an N-terminal secretion signal and to determine the functional importance of the rest of the IpaC N terminus. The 1...
متن کاملThe IpaC Carboxyterminal Effector Domain Mediates Src-Dependent Actin Polymerization during Shigella Invasion of Epithelial Cells
Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S) apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 68 3 شماره
صفحات -
تاریخ انتشار 2000